Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

Identifieur interne : 000B48 ( Main/Exploration ); précédent : 000B47; suivant : 000B49

Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

Auteurs : Weirong Chen [États-Unis] ; Xiaoxiao Wan [États-Unis] ; Tobechukwu K. Ukah [États-Unis] ; Mindy M. Miller [États-Unis] ; Subhasis Barik [États-Unis] ; Alexis N. Cattin-Roy [États-Unis] ; Habib Zaghouani [États-Unis]

Source :

RBID : pubmed:27671108

Descripteurs français

English descriptors

Abstract

To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D.

DOI: 10.4049/jimmunol.1601032
PubMed: 27671108
PubMed Central: PMC5101142


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.</title>
<author>
<name sortKey="Chen, Weirong" sort="Chen, Weirong" uniqKey="Chen W" first="Weirong" last="Chen">Weirong Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wan, Xiaoxiao" sort="Wan, Xiaoxiao" uniqKey="Wan X" first="Xiaoxiao" last="Wan">Xiaoxiao Wan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ukah, Tobechukwu K" sort="Ukah, Tobechukwu K" uniqKey="Ukah T" first="Tobechukwu K" last="Ukah">Tobechukwu K. Ukah</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Miller, Mindy M" sort="Miller, Mindy M" uniqKey="Miller M" first="Mindy M" last="Miller">Mindy M. Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Barik, Subhasis" sort="Barik, Subhasis" uniqKey="Barik S" first="Subhasis" last="Barik">Subhasis Barik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cattin Roy, Alexis N" sort="Cattin Roy, Alexis N" uniqKey="Cattin Roy A" first="Alexis N" last="Cattin-Roy">Alexis N. Cattin-Roy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zaghouani, Habib" sort="Zaghouani, Habib" uniqKey="Zaghouani H" first="Habib" last="Zaghouani">Habib Zaghouani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; zaghouanih@health.missouri.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:regionArea>
<wicri:noRegion>Columbia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Neurology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Child Health, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27671108</idno>
<idno type="pmid">27671108</idno>
<idno type="doi">10.4049/jimmunol.1601032</idno>
<idno type="pmc">PMC5101142</idno>
<idno type="wicri:Area/Main/Corpus">000965</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000965</idno>
<idno type="wicri:Area/Main/Curation">000965</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000965</idno>
<idno type="wicri:Area/Main/Exploration">000965</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.</title>
<author>
<name sortKey="Chen, Weirong" sort="Chen, Weirong" uniqKey="Chen W" first="Weirong" last="Chen">Weirong Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wan, Xiaoxiao" sort="Wan, Xiaoxiao" uniqKey="Wan X" first="Xiaoxiao" last="Wan">Xiaoxiao Wan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ukah, Tobechukwu K" sort="Ukah, Tobechukwu K" uniqKey="Ukah T" first="Tobechukwu K" last="Ukah">Tobechukwu K. Ukah</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Miller, Mindy M" sort="Miller, Mindy M" uniqKey="Miller M" first="Mindy M" last="Miller">Mindy M. Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Barik, Subhasis" sort="Barik, Subhasis" uniqKey="Barik S" first="Subhasis" last="Barik">Subhasis Barik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cattin Roy, Alexis N" sort="Cattin Roy, Alexis N" uniqKey="Cattin Roy A" first="Alexis N" last="Cattin-Roy">Alexis N. Cattin-Roy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zaghouani, Habib" sort="Zaghouani, Habib" uniqKey="Zaghouani H" first="Habib" last="Zaghouani">Habib Zaghouani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; zaghouanih@health.missouri.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia</wicri:regionArea>
<wicri:noRegion>Columbia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Neurology, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>Department of Child Health, University of Missouri School of Medicine, Columbia</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of immunology (Baltimore, Md. : 1950)</title>
<idno type="eISSN">1550-6606</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antigens (immunology)</term>
<term>Autoimmunity (MeSH)</term>
<term>B7-H1 Antigen (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Diabetes Mellitus, Type 1 (immunology)</term>
<term>Diabetes Mellitus, Type 1 (therapy)</term>
<term>Immune Tolerance (MeSH)</term>
<term>Immunomodulation (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred NOD (MeSH)</term>
<term>Multiprotein Complexes (immunology)</term>
<term>Programmed Cell Death 1 Receptor (metabolism)</term>
<term>Receptors, CXCR3 (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>T-Lymphocytes (immunology)</term>
<term>TOR Serine-Threonine Kinases (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antigène CD274 (métabolisme)</term>
<term>Antigènes (immunologie)</term>
<term>Auto-immunité (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (immunologie)</term>
<term>Diabète de type 1 (immunologie)</term>
<term>Diabète de type 1 (thérapie)</term>
<term>Immunomodulation (MeSH)</term>
<term>Lymphocytes T (immunologie)</term>
<term>Récepteur-1 de mort cellulaire programmée (métabolisme)</term>
<term>Récepteurs CXCR3 (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée NOD (MeSH)</term>
<term>Sérine-thréonine kinases TOR (immunologie)</term>
<term>Tolérance immunitaire (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antigens</term>
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>B7-H1 Antigen</term>
<term>Programmed Cell Death 1 Receptor</term>
<term>Receptors, CXCR3</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Antigènes</term>
<term>Complexes multiprotéiques</term>
<term>Diabète de type 1</term>
<term>Lymphocytes T</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Diabetes Mellitus, Type 1</term>
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigène CD274</term>
<term>Récepteur-1 de mort cellulaire programmée</term>
<term>Récepteurs CXCR3</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Diabetes Mellitus, Type 1</term>
</keywords>
<keywords scheme="MESH" qualifier="thérapie" xml:lang="fr">
<term>Diabète de type 1</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Autoimmunity</term>
<term>Cells, Cultured</term>
<term>Immune Tolerance</term>
<term>Immunomodulation</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mice</term>
<term>Mice, Inbred NOD</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Auto-immunité</term>
<term>Cellules cultivées</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Immunomodulation</term>
<term>Souris</term>
<term>Souris de lignée NOD</term>
<term>Tolérance immunitaire</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27671108</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1550-6606</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>197</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2016</Year>
<Month>11</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of immunology (Baltimore, Md. : 1950)</Title>
<ISOAbbreviation>J Immunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.</ArticleTitle>
<Pagination>
<MedlinePgn>3554-3565</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D.</AbstractText>
<CopyrightInformation>Copyright © 2016 by The American Association of Immunologists, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Weirong</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Xiaoxiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ukah</LastName>
<ForeName>Tobechukwu K</ForeName>
<Initials>TK</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Mindy M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barik</LastName>
<ForeName>Subhasis</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cattin-Roy</LastName>
<ForeName>Alexis N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zaghouani</LastName>
<ForeName>Habib</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0003-4653-0050</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; zaghouanih@health.missouri.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212; and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK093515</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Immunol</MedlineTA>
<NlmUniqueID>2985117R</NlmUniqueID>
<ISSNLinking>0022-1767</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000941">Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060890">B7-H1 Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C515188">Cxcr3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491383">Pdcd1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D061026">Programmed Cell Death 1 Receptor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054367">Receptors, CXCR3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000941" MajorTopicYN="N">Antigens</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015551" MajorTopicYN="N">Autoimmunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060890" MajorTopicYN="N">B7-H1 Antigen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003922" MajorTopicYN="N">Diabetes Mellitus, Type 1</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007108" MajorTopicYN="N">Immune Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056747" MajorTopicYN="N">Immunomodulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016688" MajorTopicYN="N">Mice, Inbred NOD</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061026" MajorTopicYN="N">Programmed Cell Death 1 Receptor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054367" MajorTopicYN="N">Receptors, CXCR3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27671108</ArticleId>
<ArticleId IdType="pii">jimmunol.1601032</ArticleId>
<ArticleId IdType="doi">10.4049/jimmunol.1601032</ArticleId>
<ArticleId IdType="pmc">PMC5101142</ArticleId>
<ArticleId IdType="mid">NIHMS814686</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Diabetes. 2013 Aug;62(8):2879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23715620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2005 Aug;23(2):115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16111631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2006 Aug;70(2):562-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16717135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Nov;15(11):1340-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24161930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2002 Jul 15;196(2):217-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2012 Jun 4;209(6):1201-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22641383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2012 Feb;2(2):a007773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Dec 15;173(12):7308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15585854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 24;106(12 ):4810-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2012 Apr 20;12(5):325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2007 Jul;27(1):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2010 Jan 29;32(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20060330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Feb 12;351(6274):711-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26912858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2001 Jan 15;166(2):908-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11145667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2012;30:39-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 7;257(5071):789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1323143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2006 Apr 17;203(4):883-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2000 Jun 19;191(12):2039-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Jan 15;174(2):662-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1997 Mar 17;185(6):1043-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9091578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Apr 1;184(7):3377-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2001 Sep 20;20(42):6018-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11593409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2008 Aug;224:166-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18759926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2008 May;9(5):513-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Sep 24;74(6):1089-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8402882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2012 Aug;61(8):2054-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2009 Dec 21;206(13):3015-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2005;23:515-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15771580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1989;7:445-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2653373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2007 Jun;19(3):162-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17383196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2008;26:677-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jul 25;26(14):3441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17599070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Jun 19;30(6):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Apr;12(4):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21358638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2004 May;4(5):336-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2002;20:29-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Feb 25;530(7591):434-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26886799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Jul 15;173(2):945-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Jun;22(12):4062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12024020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2008 Jan 21;205(1):207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18195074</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Missouri (État)">
<name sortKey="Chen, Weirong" sort="Chen, Weirong" uniqKey="Chen W" first="Weirong" last="Chen">Weirong Chen</name>
</region>
<name sortKey="Barik, Subhasis" sort="Barik, Subhasis" uniqKey="Barik S" first="Subhasis" last="Barik">Subhasis Barik</name>
<name sortKey="Cattin Roy, Alexis N" sort="Cattin Roy, Alexis N" uniqKey="Cattin Roy A" first="Alexis N" last="Cattin-Roy">Alexis N. Cattin-Roy</name>
<name sortKey="Miller, Mindy M" sort="Miller, Mindy M" uniqKey="Miller M" first="Mindy M" last="Miller">Mindy M. Miller</name>
<name sortKey="Ukah, Tobechukwu K" sort="Ukah, Tobechukwu K" uniqKey="Ukah T" first="Tobechukwu K" last="Ukah">Tobechukwu K. Ukah</name>
<name sortKey="Wan, Xiaoxiao" sort="Wan, Xiaoxiao" uniqKey="Wan X" first="Xiaoxiao" last="Wan">Xiaoxiao Wan</name>
<name sortKey="Zaghouani, Habib" sort="Zaghouani, Habib" uniqKey="Zaghouani H" first="Habib" last="Zaghouani">Habib Zaghouani</name>
<name sortKey="Zaghouani, Habib" sort="Zaghouani, Habib" uniqKey="Zaghouani H" first="Habib" last="Zaghouani">Habib Zaghouani</name>
<name sortKey="Zaghouani, Habib" sort="Zaghouani, Habib" uniqKey="Zaghouani H" first="Habib" last="Zaghouani">Habib Zaghouani</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27671108
   |texte=   Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27671108" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020